October 9, 2013

Three U.S.-based chemists share Nobel for computer modeling

Their research has helped scientists develop programs that unveil chemical processes such as the purification of exhaust fumes and the photosynthesis in green leaves.

By Karl Ritter And Malin Rising
The Associated Press

STOCKHOLM — Three U.S.-based scientists won this year’s Nobel Prize in chemistry on Wednesday for developing powerful computer models that researchers use to understand complex chemical interactions and create new drugs.

click image to enlarge

The Associated Press This screen image from a website shows the laureates Martin Karplus, Michael Levitt and Arieh Warshel as winners of the 2013 Nobel Prize in chemistry, announced by the Royal Swedish Academy of Sciences in Stockholm. The prize was awarded for laying the foundation for the computer models used to understand and predict chemical processes.

Research in the 1970s by Martin Karplus, Michael Levitt and Arieh Warshel has led to programs that unveil chemical processes such as how exhaust fumes are purified or how photosynthesis takes place in green leaves, the Royal Swedish Academy of Sciences said. That kind of knowledge makes it possible to find the best design for things like new drugs, solar cells or catalytic converters for cars.

The strength of the winning work is that it can be used to study all kinds of chemistry, the academy said.

“This year’s prize is about taking the chemical experiment to cyberspace,” said Staffan Normark, the academy’s secretary.

All three scientists became U.S. citizens. Karplus, an 83-year-old U.S. and Austrian citizen, splits his time between the University of Strasbourg, France, and Harvard University. The academy said Levitt, 66, is a British, U.S., and Israeli citizen and a professor at Stanford University School of Medicine. Warshel, 72, is a U.S. and Israeli citizen affiliated with the University of Southern California in Los Angeles.

Levitt told The Associated Press the award recognized him for work he had done when he was 20, before he even had his PhD.

“It was just me being in the right place at the right time and maybe having a few good ideas,” he said, speaking by telephone from his home in Stanford, California.

“It’s sort of nice in more general terms to see that computational science, computational biology is being recognized,” he added. “It’s become a very large field and it’s always in some ways been the poor sister, or the ugly sister, to experimental biology.”

Jokingly, he said the biggest immediate impact of the Nobel Prize would be his need for dance lessons before appearing at the Nobel banquet.

“I would say the only real change in my life is I need to learn how to dance because when you go to Stockholm you have to do ballroom dancing,” Levitt said. “This is the big problem I have right now.”

Warshel, speaking by telephone to a news conference in Stockholm, said he was “extremely happy” to have been woken up in the middle of the night in Los Angeles to find out he would share the $1.2 million prize and looks forward to collecting it in the Swedish capital.

“In short, what we developed is a way which requires computers to look, to take the structure of the protein and then to eventually understand how exactly it does what it does,” Warshel said.

When scientists wanted to simulate complex chemical processes on computers, they used to have to choose between software that was based on quantum physics, which applies on the scale of an atom, or classical Newtonian physics, which operates at larger scales. The academy said the three laureates developed computer models that “opened a gate between these two worlds.”

While quantum mechanics is more accurate, it’s impossible to use on large molecules because the equations are too complex to solve. By using quantum mechanics only for key parts of molecules and classical physics for the rest, the blended approach delivers the accuracy of the quantum approach with manageable computations.

Working together at Harvard in the early 1970s, Karplus and Warshel developed a computer program that brought together classical and quantum physics. Warshel later joined forces with Levitt at the Weizmann institute in Rehovot, Israel, and at the University of Cambridge in Britain, to develop a program that could be used to study enzymes.

(Continued on page 2)

Were you interviewed for this story? If so, please fill out our accuracy form

Send question/comment to the editors




Further Discussion

Here at OnlineSentinel.com we value our readers and are committed to growing our community by encouraging you to add to the discussion. To ensure conscientious dialogue we have implemented a strict no-bullying policy. To participate, you must follow our Terms of Use.

Questions about the article? Add them below and we’ll try to answer them or do a follow-up post as soon as we can. Technical problems? Email them to us with an exact description of the problem. Make sure to include:
  • Type of computer or mobile device your are using
  • Exact operating system and browser you are viewing the site on (TIP: You can easily determine your operating system here.)